Name: 
 

Chapter 6



Multiple Choice
Identify the choice that best completes the statement or answers the question.
 

 1. 

Classify –3x5 – 2x3 by degree and by number of terms.
a.
quintic binomial
c.
quintic trinomial
b.
quartic binomial
d.
quartic trinomial
 

 2. 

Classify –7x5 – 6x4 + 4x3 by degree and by number of terms.
a.
quartic trinomial
c.
cubic binomial
b.
quintic trinomial
d.
quadratic binomial
 

 3. 

Zach wrote the formula w(w – 1)(5w + 4) for the volume of a rectangular prism he is designing, with width w, which is always has a positive value greater than 1. Find the product and then classify this polynomial by degree and by number of terms.
a.
mc003-1.jpg; quintic trinomial
b.
mc003-2.jpg; quadratic monomial
c.
mc003-3.jpg; cubic trinomial
d.
mc003-4.jpg; quartic trinomial
 

 4. 

Write the polynomial mc004-1.jpg in standard form.
a.
mc004-2.jpg
c.
mc004-4.jpg
b.
mc004-3.jpg
d.
mc004-5.jpg
 

 5. 

Write 4x2(–2x2 + 5x3) in standard form. Then classify it by degree and number of terms.
a.
2x + 9x4; quintic binomial
c.
2x5 – 8x4; quintic trinomial
b.
20x5 – 8x4; quintic binomial
d.
20x5 – 10x4; quartic binomial
 

 6. 

Use a graphing calculator to determine which type of model best fits the values in the table.
x
–6
–2
0
2
6
y
–6
–2
0
2
6
a.
quadratic model
c.
linear model
b.
cubic model
d.
none of these
 

 7. 

Use a graphing calculator to find a polynomial function to model the data.

x
1
2
3
4
5
6
7
8
9
10
f(x)
12
4
5
13
9
16
19
16
24
43
a.
f(x) = 0.8x4 – 1.73x3 + 12.67x2 – 34.68x + 35.58
b.
f(x) = 0.08x3 – 1.73x2 + 12.67x + 35.58
c.
f(x) = 0.08x4 + 1.73x3 – 12.67x2 + 34.68x – 35.58
d.
f(x) = 0.08x4 – 1.73x3 + 12.67x2 – 34.68x + 35.58
 

 8. 

The table shows the number of hybrid cottonwood trees planted in tree farms in Oregon since 1995. Find a cubic function to model the data and use it to estimate the number of cottonwoods planted in 2006.
Years since 1995
1
3
5
7
9
Trees planted (in thousands)
1.3
18.3
70.5
177.1
357.3
a.
mc008-1.jpg; 630.3 thousand trees
b.
mc008-2.jpg; 630.3 thousand trees
c.
mc008-3.jpg; 618.1 thousand trees
d.
mc008-4.jpg; 618.1 thousand trees
 

 9. 

The table shows the number of llamas born on llama ranches worldwide since 1988. Find a cubic function to model the data and use it to estimate the number of births in 1999.
Years since 1988
1
3
5
7
9
Llamas born (in thousands)
1.6
20
79.2
203.2
416
a.
mc009-1.jpg; 741,600 llamas
b.
mc009-2.jpg; 563,200 llamas
c.
mc009-3.jpg; 741,600 llamas
d.
mc009-4.jpg; 563,200 llamas
 

 10. 

Write the expression (x + 6)(x – 4) as a polynomial in standard form.
a.
x2 – 10x + 2
c.
x2 + 2x – 24
b.
x2 + 10x – 24
d.
x2 + 10x – 10
 

 11. 

Write 4x3 + 8x2 – 96x in factored form.
a.
6x(x + 4)(x – 4)
c.
4x(x + 6)(x + 4)
b.
4x(x – 4)(x + 6)
d.
–4x(x + 6)(x + 4)
 

 12. 

Miguel is designing shipping boxes that are rectangular prisms. One shape of box with height h in feet, has a volume defined by the function mc012-1.jpg. Graph the function. What is the maximum volume for the domain mc012-2.jpg? Round to the nearest cubic foot.
a.
10 ft3
b.
107 ft3
c.
105 ft3
d.
110 ft3
 

 13. 

Use a graphing calculator to find the relative minimum, relative maximum, and zeros of mc013-1.jpg. If necessary, round to the nearest hundredth.
a.
relative minimum: (–62.24, 0.36), relative maximum: (37.79, –3.69),
zeros: x = 5, –2, 2
b.
relative minimum: (0.36, –62.24), relative maximum: (–3.69, 37.79),
zeros: x = –5, –2, 2
c.
relative minimum: (0.36, –62.24), relative maximum: (–3.69, 37.79),
zeros: x = 5, –2
d.
relative minimum: (–62.24, 0.36), relative maximum: (37.79, –3.69),
zeros: x = –5, –2
 

 14. 

Find the zeros of mc014-1.jpg. Then graph the equation.
a.
3, 2, –3
mc014-2.jpg
c.
3, 2
mc014-4.jpg
b.
0, –3, –2
mc014-3.jpg
d.
0, 3, 2
mc014-5.jpg
 

 15. 

Write a polynomial function in standard form with zeros at 5, –4, and 1.
a.
mc015-1.jpg
c.
mc015-3.jpg
b.
mc015-2.jpg
d.
mc015-4.jpg
 

 16. 

Find the zeros of mc016-1.jpg and state the multiplicity.
a.
2, multiplicity –3; 5, multiplicity 6
b.
–3, multiplicity 2; 6, multiplicity 5
c.
–3, multiplicity 2; 5, multiplicity 6
d.
2, multiplicity –3; 6, multiplicity 5
 

 17. 

Divide mc017-1.jpg by x + 3.
a.
mc017-2.jpg
c.
mc017-4.jpg
b.
mc017-3.jpg, R –93
d.
mc017-5.jpg, R 99
 

 18. 

Determine which binomial is not a factor of mc018-1.jpg.
a.
x + 4
c.
x – 5
b.
x + 3
d.
4x + 3
 

 19. 

Determine which binomial is a factor of mc019-1.jpg.
a.
x + 5
b.
x + 20
c.
x – 24
d.
x – 5
 

 20. 

The volume of a shipping box in cubic feet can be expressed as the polynomial mc020-1.jpg. Each dimension of the box can be expressed as a linear expression with integer coefficients. Which expression could represent one of the three dimensions of the box?
a.
x + 6
c.
2x + 3
b.
x + 1
d.
2x + 1
 
 
Divide using synthetic division.
 

 21. 

mc021-1.jpg
a.
mc021-2.jpg
c.
mc021-4.jpg
b.
mc021-3.jpg
d.
mc021-5.jpg
 

 22. 

mc022-1.jpg
a.
mc022-2.jpg, R 70
c.
mc022-4.jpg, R 46
b.
mc022-3.jpg, R –62
d.
mc022-5.jpg, R –38
 

 23. 

Use synthetic division to find P(2) for mc023-1.jpg.
a.
2
b.
28
c.
4
d.
–16
 
 
Solve the equation by graphing.
 

 24. 

mc024-1.jpg
a.
x = 49
b.
no solution
c.
x = 19
d.
x = 12
 

 25. 

mc025-1.jpg
a.
no solution
c.
0, 2, –0.38
b.
–2, 0.38
d.
0, –2, 0.38
 

 26. 

mc026-1.jpg
a.
3
b.
–3
c.
–3, 3
d.
no solution
 

 27. 

The dimensions in inches of a shipping box at We Ship 4 You can be expressed as width x, length x + 5, and height 3x – 1. The volume is about 7.6 ft3. Find the dimensions of the box in inches. Round to the nearest inch.
a.
15 in. by 20 in. by 44 in.
c.
15 in. by 20 in. by 45 in.
b.
12 in. by 17 in. by 35 in.
d.
12 in. by 17 in. by 36 in.
 

 28. 

Over two summers, Ray saved $1000 and $600. The polynomial mc028-1.jpg represents her savings after three years, where x is the growth factor. (The interest rate r is x – 1.) What is the interest rate she needs to save $1850 after three years?
a.
9.3%
b.
1.1%
c.
–269.3%
d.
0.1%
 
 
Factor the expression.
 

 29. 

mc029-1.jpg
a.
mc029-2.jpg
c.
mc029-4.jpg
b.
mc029-3.jpg
d.
mc029-5.jpg
 

 30. 

mc030-1.jpg
a.
mc030-2.jpg
c.
mc030-4.jpg
b.
mc030-3.jpg
d.
mc030-5.jpg
 

 31. 

mc031-1.jpg
a.
mc031-2.jpg
c.
mc031-4.jpg
b.
mc031-3.jpg
d.
no solution
 

 32. 

Solve mc032-1.jpg. Find all complex roots.
a.
mc032-2.jpg, mc032-3.jpg
c.
mc032-4.jpg,mc032-5.jpg
b.
no solution
d.
mc032-6.jpg, mc032-7.jpg
 

 33. 

Ian designed a child’s tent in the shape of a cube. The volume of the tent in cubic feet can be modeled by the equation mc033-1.jpg, where s is the side length. What is the side length of the tent?
a.
4 feet
b.
16 feet
c.
64 feet
d.
8 feet
 

 34. 

Solve mc034-1.jpg.
a.
no solution
c.
3, –3, 5, –5
b.
3, –5
d.
3, –3
 

 35. 

Use the Rational Root Theorem to list all possible rational roots of the polynomial equation mc035-1.jpg. Do not find the actual roots.
a.
–4, –2, –1, 1, 2, 4
c.
1, 2, 4
b.
no roots
d.
–4, –1, 1, 4
 

 36. 

Find the rational roots of mc036-1.jpg.
a.
2, 6
b.
–6, –2
c.
–2, 6
d.
–6, 2
 
 
Find the roots of the polynomial equation.
 

 37. 

mc037-1.jpg
a.
–3 ± 5i, –4
c.
–3 ± i, 4
b.
3 ± 5i, –4
d.
3 ± i, 4
 

 38. 

mc038-1.jpg
a.
mc038-2.jpg
c.
mc038-4.jpg
b.
mc038-3.jpg
d.
mc038-5.jpg
 

 39. 

mc039-1.jpg
a.
mc039-2.jpg
c.
mc039-4.jpg
b.
mc039-3.jpg
d.
mc039-5.jpg
 

 40. 

A polynomial equation with rational coefficients has the roots mc040-1.jpg. Find two additional roots.
a.
mc040-2.jpg
c.
mc040-4.jpg
b.
mc040-3.jpg
d.
mc040-5.jpg
 

 41. 

Find a third-degree polynomial equation with rational coefficients that has roots –5 and 6 + i.
a.
mc041-1.jpg
c.
mc041-3.jpg
b.
mc041-2.jpg
d.
mc041-4.jpg
 

 42. 

Find a quadratic equation with roots –1 + 4i and –1 – 4i.
a.
mc042-1.jpg
c.
mc042-3.jpg
b.
mc042-2.jpg
d.
mc042-4.jpg
 

 43. 

For the equation mc043-1.jpg, find the number of complex roots and the possible number of real roots.
a.
4 complex roots; 0, 2 or 4 real roots
b.
4 complex roots; 1 or 3 real roots
c.
3 complex roots; 1 or 3 real roots
d.
3 complex roots; 0, 2 or 4 real roots
 
 
For the equation, find the number of complex roots, the possible number of real roots, and the possible rational roots.
 

 44. 

mc044-1.jpg
a.
7 complex roots; 1, 3, 5, or 7 real roots; possible rational roots: ±1, ±5
b.
7 complex roots; 2, 4, or 6 real roots; possible rational roots: ±1, ±5
c.
5 complex roots; 1, 3, or 5 real roots; possible rational roots: mc044-2.jpg, ±1, ±5
d.
5 complex roots; 1, 3, or 5 real roots; possible rational roots: ±1, ±5
 

 45. 

mc045-1.jpg
a.
6 complex roots; 2, 4, or 6 real roots; possible rational roots: mc045-2.jpg
b.
6 complex roots; 2, 4, or 6 real roots; possible rational roots: mc045-3.jpg
c.
6 complex roots; 0, 2, 4, or 6 real roots; possible rational roots: mc045-4.jpg
d.
6 complex roots; 0, 2, 4, or 6 real roots; possible rational roots: mc045-5.jpg
 

 46. 

Find all zeros of mc046-1.jpg.
a.
mc046-2.jpg
c.
mc046-4.jpg
b.
mc046-3.jpg
d.
mc046-5.jpg
 

 47. 

In how many different orders can you line up 8 cards on a shelf?
a.
8
b.
1
c.
1,680
d.
40,320
 

 48. 

Verne has 6 math books to line up on a shelf. Jenny has 4 English books to line up on a shelf. In how many more orders can Verne line up his books than Jenny?
a.
24
b.
720
c.
14
d.
696
 
 
Evaluate the expression.
 

 49. 

5!
a.
24
b.
120
c.
15
d.
720
 

 50. 

mc050-1.jpg
a.
604,800
b.
720
c.
120
d.
mc050-2.jpg
 

 51. 

mc051-1.jpg
a.
13
b.
35
c.
79
d.
840
 

 52. 

mc052-1.jpg
a.
9
b.
362,880
c.
126
d.
3,024
 

 53. 

mc053-1.jpg
a.
9
b.
1
c.
5,040
d.
7
 

 54. 

mc054-1.jpg
a.
14,190
b.
4
c.
8,555
d.
mc054-2.jpg
 

 55. 

There are 10 students participating in a spelling bee. In how many ways can the students who go first and second in the bee be chosen?
a.
1 way
c.
3,628,800 ways
b.
90 ways
d.
45 ways
 

 56. 

The Booster Club sells meals at basketball games. Each meal comes with a choice of hamburgers, pizza, hot dogs, cheeseburgers, or tacos, and a choice of root beer, lemonade, milk, coffee, tea, or cola. How many possible meal combinations are there?
a.
10
b.
11
c.
28
d.
30
 

 57. 

In how many ways can 3 singers be selected from 5 who came to an audition?
a.
1
b.
10
c.
5
d.
60
 

 58. 

There are 6 people on the ballot for regional judges. Voters can vote for any 4. Voters can choose to vote for 0¸ 1¸ 2¸ 3¸ or 4 judges. In how many different ways can a person vote?
a.
57
b.
5
c.
15
d.
6
 
 
Use Pascal’s Triangle to expand the binomial.
 

 59. 

mc059-1.jpg
a.
mc059-2.jpg
b.
mc059-3.jpg
c.
mc059-4.jpg
d.
mc059-5.jpg
 

 60. 

mc060-1.jpg
a.
mc060-2.jpg
b.
mc060-3.jpg
c.
mc060-4.jpg
d.
mc060-5.jpg
 

 61. 

mc061-1.jpg
a.
mc061-2.jpg
b.
mc061-3.jpg
c.
mc061-4.jpg
d.
mc061-5.jpg
 

 62. 

A manufacturer of shipping boxes has a box shaped like a cube. The side length is
5a + 4b. What is the volume of the box in terms of a and b?
a.
mc062-1.jpg
c.
mc062-3.jpg
b.
mc062-2.jpg
d.
mc062-4.jpg
 

 63. 

Use the Binomial Theorem to expand mc063-1.jpg.
a.
mc063-2.jpg
b.
mc063-3.jpg
c.
mc063-4.jpg
d.
mc063-5.jpg
 

 64. 

Determine the probability of getting four heads when tossing a coin four times.
a.
0.5
b.
0.375
c.
0.25
d.
0.0625
 

 65. 

Determine the probability that you will get 3 green lights in a series of 5 lights. Assume red and green are equally likely occurrences.
a.
31.25%
b.
62.5%
c.
10%
d.
31.25%
 

Short Answer
 

 66. 

The diagram shows a storage building that consists of a cubic base and a pyramid-shaped top.
a. Write an expression for the cube’s volume.
b. Write an expression for the volume of the pyramid-shaped top.
c. Write a polynomial expression to represent the total volume.
sa066-1.jpg
 

 67. 

The table shows the population of Rockerville over a twenty-five year period. Let 0 represent 1975.

Population of Rockerville
Year
Population
1975
336
1980
350
1985
359
1990
366
1995
373
2000
395

a. Find a quadratic model for the data.
b. Find a cubic model for the data.
c. Graph each model. Compare the quadratic model and cubic model to determine which is a better fit.
 

 68. 

The volume in cubic feet of a box can be expressed as sa068-1.jpg, or as the product of three linear factors with integer coefficients. The width of the box is 2 – x.
a. Factor the polynomial to find linear expressions for the height and the width.
b. Graph the function. Find the x-intercepts. What do they represent?
c. Describe a realistic domain for the function.
d. Find the maximum volume of the box.
 

 69. 

The volume in cubic feet of a workshop’s storage chest can be expressed as the product of its three dimensions: sa069-1.jpg. The depth is x + 1.
a. Find linear expressions with integer coefficients for the other dimensions.
b. If the depth of the chest is 6 feet, what are the other dimensions?
 

 70. 

State whether each situation involves a combination or a permutation.
a. 4 of the 20 radio contest winners selected to try for the grand prize
b. 5 friends waiting in line at the movies
c. 6 students selected at random to attend a presentation
 

 71. 

To raise money, a club is selling 500 raffle tickets. Each ticket has a 5% chance of winning a prize. K’Lynn buys 6 tickets. To the nearest percent, find the probability of each outcome.
a. winning exactly 1 time
b. winning exactly 2 times
c. winning exactly 4 times
 

Essay
 

 72. 

A model for the height of a toy rocket shot from a platform is es072-1.jpg, where x is the time in seconds and y is the height in feet.
a. Graph the function.
b. Find the zeros of the function.
c. What do the zeros represent? Are they realistic?
d. About how high does the rocket fly before hitting the ground? Explain.
 

 73. 

Find the rational roots of es073-1.jpg. Explain the process you use and show your work.
 

 74. 

Use the first 13 rows of Pascal’s triangle.
a. Circle the numbers that are multiples of 3. Notice that the multiples of 3 form triangular groups. How many multiples of 3 are in the uppermost group?
b. Color the numbers that are multiples of 5. How many multiples of 5 are in the uppermost triangular group?
c. Draw a triangle around the numbers that are multiples of 7. How many multiples of 7 are in the triangular group?
d. Look for a pattern. Use the pattern to predict the number of multiples of 11 that would form the first triangular group.
e. Does your pattern work for multiples of 4 or 9? If not, for what kind of numbers does your pattern seem to work?
 

Other
 

 75. 

What are multiple zeros? Explain how you can tell if a function has multiple zeros.
 

 76. 

Use division to prove that x = 3 is a real zero of ot076-1.jpg.
 

 77. 

A polynomial equation with rational coefficients has the roots ot077-1.jpg and ot077-2.jpg. Explain how to find two additional roots and name them.
 

 78. 

Use the list of student council members in the table. A committee must be made up of two students from grades 9, 10, or 11, and another two students from grade 12. How many different committees can be made? Explain.
Name
Grade
Name
Grade
W. Alba
10
J. Nunez
9
A. Brown
10
R. O’Brian
12
C. Dwight
11
L. Sanchez
11
E. Farrell
12
T. Townsend
10
K. Gonzalez
9
W. Velez
11
M. Milano
10
J. Watson
12
A. Miles
9
O. Xavier
10
 



 
Check Your Work     Start Over