Name: 
 

Chapter 5



Multiple Choice
Identify the choice that best completes the statement or answers the question.
 
 
Determine whether the function is linear or quadratic. Identify the quadratic, linear, and constant terms.
 

 1. 

mc001-1.jpg
a.
linear function
linear term: mc001-2.jpg
constant term: 6
c.
linear function
linear term: mc001-5.jpg
constant term: –6
b.
quadratic function
quadratic term: mc001-3.jpg
linear term: mc001-4.jpg
constant term: 6
d.
quadratic function
quadratic term: mc001-6.jpg
linear term: mc001-7.jpg
constant term: –6
 

 2. 

mc002-1.jpg
a.
linear function
linear term: mc002-2.jpg
constant term: –6
c.
quadratic function
quadratic term: mc002-5.jpg
linear term: mc002-6.jpg
constant term: –6
b.
quadratic function
quadratic term: mc002-3.jpg
linear term: mc002-4.jpg
constant term: –6
d.
linear function
linear term: mc002-7.jpg
constant term: –6
 
 
Identify the vertex and the axis of symmetry of the parabola. Identify points corresponding to P and Q.
 

 3. 

mc003-1.jpg
a.
(–1, –2), x = –1
P'(0, –1), Q'(–3, 2)
c.
(–1, –2), x = –1
P'(–2, –1), Q'(–1, 2)
b.
(–2, –1), x = –2
P'(–2, –1), Q'(–1, 2)
d.
(–2, –1), x = –2
P'(0, –1), Q'(–3, 2)
 

 4. 

mc004-1.jpg
a.
(–3, 1), x = –3;
P'(–2, 0), Q'(–5, –3)
c.
(–3, 1), x = –3;
P'(–4, 0), Q'(–1, –3)
b.
(1, –3), x = 1;
P'(–2, 0), Q'(–5, –3)
d.
(1, –3), x = 1;
P'(–4, 0), Q'(–1, –3)
 

 5. 

Find a quadratic function to model the values in the table. Predict the value of y for x = 6.
x
y
–1
2
0
–2
3
10
a.
mc005-1.jpg; –58
c.
mc005-3.jpg; 58
b.
mc005-2.jpg; 60
d.
mc005-4.jpg; –58
 
 
Find a quadratic model for the set of values.
 

 6. 

(–2, 8), (0, –4), (4, 68)
a.
mc006-1.jpg
c.
mc006-3.jpg
b.
mc006-2.jpg
d.
mc006-4.jpg
 

 7. 


x
–2
0
4
f(x)
1
–3
85
a.
mc007-1.jpg
c.
mc007-3.jpg
b.
mc007-2.jpg
d.
mc007-4.jpg
 

 8. 

A biologist took a count of the number of migrating waterfowl at a particular lake, and recounted the lake’s population of waterfowl on each of the next six weeks.
Week
0
1
2
3
4
5
6
Population
585
582
629
726
873
1,070
1,317

a.Find a quadratic function that models the data as a function of x, the number of weeks.
b.Use the model to estimate the number of waterfowl at the lake on week 8.
a.
mc008-1.jpg; 1,614 waterfowl
b.
mc008-2.jpg; 2,679 waterfowl
c.
mc008-3.jpg; 1,961 waterfowl
d.
mc008-4.jpg; 2,201 waterfowl
 

 9. 

A manufacturer determines that the number of drills it can sell is given by the formula mc009-1.jpg, where p is the price of the drills in dollars.
a.At what price will the manufacturer sell the maximum number of drills?
b.What is the maximum number of drills that can be sold?
a.
$60; 285 drills
c.
$31; 2,418 drills
b.
$30; 2,415 drills
d.
$90; 8,385 drills
 

 10. 

Dalco Manufacturing estimates that its weekly profit, P, in hundreds of dollars, can be approximated by the formula mc010-1.jpg, where x is the number of units produced per week, in thousands.
a.How many units should the company produce per week to earn the maximum profit?
b.Find the maximum weekly profit.
a.
1,000 units; $1300
c.
1,000 units; $600
b.
3,000 units; $100
d.
2,000 units; $1100
 

 11. 

Which is the graph of mc011-1.jpg?
a.
mc011-2.jpg
c.
mc011-4.jpg
b.
mc011-3.jpg
d.
mc011-5.jpg
 

 12. 

Use vertex form to write the equation of the parabola.
mc012-1.jpg
a.
mc012-2.jpg
c.
mc012-4.jpg
b.
mc012-3.jpg
d.
mc012-5.jpg
 

 13. 

Identify the vertex and the y-intercept of the graph of the function mc013-1.jpg.
a.
vertex: (–2, 5);
y-intercept: –7
c.
vertex: (2, 5);
y-intercept: –7
b.
vertex: (2, –5);
y-intercept: –12
d.
vertex: (–2, –5);
y-intercept: 9
 

 14. 

Write mc014-1.jpg in vertex form.
a.
mc014-2.jpg
c.
mc014-4.jpg
b.
mc014-3.jpg
d.
mc014-5.jpg
 
 
Write the equation of the parabola in vertex form.
 

 15. 

vertex (–4, 3), point (4, 131)
a.
mc015-1.jpg
c.
mc015-3.jpg
b.
mc015-2.jpg
d.
mc015-4.jpg
 

 16. 

vertex (0, 3), point (–4, –45)
a.
mc016-1.jpg
c.
mc016-3.jpg
b.
mc016-2.jpg
d.
mc016-4.jpg
 
 
Factor the expression.
 

 17. 

mc017-1.jpg
a.
mc017-2.jpg
c.
mc017-4.jpg
b.
mc017-3.jpg
d.
mc017-5.jpg
 

 18. 

mc018-1.jpg
a.
mc018-2.jpg
c.
mc018-4.jpg
b.
mc018-3.jpg
d.
mc018-5.jpg
 

 19. 

mc019-1.jpg
a.
mc019-2.jpg
c.
mc019-4.jpg
b.
mc019-3.jpg
d.
mc019-5.jpg
 

 20. 

mc020-1.jpg
a.
mc020-2.jpg
c.
mc020-4.jpg
b.
mc020-3.jpg
d.
mc020-5.jpg
 

 21. 

mc021-1.jpg
a.
mc021-2.jpg
c.
mc021-4.jpg
b.
mc021-3.jpg
d.
mc021-5.jpg
 

 22. 

mc022-1.jpg
a.
mc022-2.jpg
c.
mc022-4.jpg
b.
mc022-3.jpg
d.
mc022-5.jpg
 

 23. 

mc023-1.jpg
a.
mc023-2.jpg
c.
mc023-4.jpg
b.
mc023-3.jpg
d.
mc023-5.jpg
 

 24. 

mc024-1.jpg
a.
mc024-2.jpg
c.
mc024-4.jpg
b.
mc024-3.jpg
d.
mc024-5.jpg
 

 25. 

mc025-1.jpg
a.
mc025-2.jpg
c.
mc025-4.jpg
b.
mc025-3.jpg
d.
mc025-5.jpg
 

 26. 

Solve by factoring.
mc026-1.jpg = 0
a.
8, mc026-2.jpg
b.
–8, 4
c.
–8, mc026-3.jpg
d.
mc026-4.jpg, mc026-5.jpg
 
 
Solve the equation by finding square roots.
 

 27. 

mc027-1.jpg
a.
mc027-2.jpg
c.
mc027-5.jpg
b.
mc027-3.jpg, –mc027-4.jpg
d.
mc027-6.jpg
 

 28. 

mc028-1.jpg
a.
mc028-2.jpg, mc028-3.jpg
b.
mc028-4.jpg, mc028-5.jpg
c.
mc028-6.jpg, mc028-7.jpg
d.
mc028-8.jpg, mc028-9.jpg
 

 29. 

The function mc029-1.jpg models the height y in feet of a stone t seconds after it is dropped from the edge of a vertical cliff. How long will it take the stone to hit the ground? Round to the nearest hundredth of a second.
a.
7.79 seconds
c.
0.25 seconds
b.
11.02 seconds
d.
5.51 seconds
 

 30. 

Use a graphing calculator to solve the equation mc030-1.jpg. If necessary, round to the nearest hundredth.
a.
1.16, –1.16
c.
2.95, –1.7
b.
1.47, –0.85
d.
0.85, –1.47
 

 31. 

A landscaper is designing a flower garden in the shape of a trapezoid. She wants the length of the shorter base to be 3 yards greater than the height, and the length of the longer base to be 5 yards greater than the height. For what height will the garden have an area of 360 square yards? Round to the nearest tenth of a yard.
a.
17.1 yards
c.
39.2 yards
b.
34.2 yards
d.
152.6 yards
 

 32. 

Simplify mc032-1.jpg using the imaginary number i.
a.
mc032-2.jpg
b.
mc032-3.jpg
c.
mc032-4.jpg
d.
mc032-5.jpg
 
 
Write the number in the form a + bi.
 

 33. 

mc033-1.jpg
a.
mc033-2.jpg
c.
mc033-4.jpg
b.
mc033-3.jpg
d.
mc033-5.jpg
 

 34. 

–6 – mc034-1.jpg
a.
mc034-2.jpg
c.
mc034-4.jpg
b.
mc034-3.jpg
d.
mc034-5.jpg
 

 35. 

Find mc035-1.jpg.
a.
–9
b.
9
c.
mc035-2.jpg
d.
mc035-3.jpg
 

 36. 

Identify the graph of the complex number mc036-1.jpg.
a.
mc036-2.jpg
c.
mc036-4.jpg
b.
mc036-3.jpg
d.
mc036-5.jpg
 

 37. 

Find the additive inverse of mc037-1.jpg.
a.
mc037-2.jpg
c.
mc037-4.jpg
b.
mc037-3.jpg
d.
mc037-5.jpg
 
 
Simplify the expression.
 

 38. 

mc038-1.jpg
a.
mc038-2.jpg
c.
mc038-4.jpg
b.
mc038-3.jpg
d.
mc038-5.jpg
 

 39. 

mc039-1.jpg
a.
mc039-2.jpg
c.
mc039-4.jpg
b.
mc039-3.jpg
d.
mc039-5.jpg
 

 40. 

mc040-1.jpg
a.
36
b.
–36
c.
–36i
d.
36i
 

 41. 

mc041-1.jpg
a.
mc041-2.jpg
c.
mc041-4.jpg
b.
mc041-3.jpg
d.
mc041-5.jpg
 
 
Solve the equation.
 

 42. 

mc042-1.jpg
a.
mc042-2.jpgi, mc042-3.jpgi
c.
mc042-6.jpgi, mc042-7.jpgi
b.
mc042-4.jpgi, mc042-5.jpgi
d.
mc042-8.jpg, mc042-9.jpg
 

 43. 

mc043-1.jpg
a.
14, 4
c.
14, –14
b.
–4, –14
d.
–4, 4
 

 44. 

Find the first three output values of the fractal-generating function mc044-1.jpg. Use z = 0 as the first input value.
a.
mc044-2.jpg, 536828 + 336604i
b.
mc044-3.jpg, 536828 + 336604i
c.
mc044-4.jpg
d.
mc044-5.jpg, 536828 + 336604i
 

 45. 

Two complex numbers a + bi and c + di are equal when a = c and b = d. Solve the equation mc045-1.jpg for x and y, where x and y are real numbers.
a.
x = mc045-2.jpg; y = mc045-3.jpg
c.
x = mc045-6.jpg; y = mc045-7.jpg
b.
x = mc045-4.jpg; y = mc045-5.jpg
d.
x = mc045-8.jpg; y = mc045-9.jpg
 

 46. 

Find the missing value to complete the square.
mc046-1.jpg
a.
2
b.
1
c.
4
d.
8
 
 
Solve the quadratic equation by completing the square.
 

 47. 

mc047-1.jpg
a.
mc047-2.jpg mc047-3.jpg
c.
mc047-5.jpg mc047-6.jpg
b.
mc047-4.jpg
d.
mc047-7.jpg
 

 48. 

mc048-1.jpg
a.
mc048-2.jpg mc048-3.jpg
c.
mc048-5.jpg
b.
mc048-4.jpg
d.
mc048-6.jpg
 

 49. 

mc049-1.jpg
a.
mc049-2.jpg mc049-3.jpg
c.
mc049-6.jpg mc049-7.jpg
b.
mc049-4.jpg mc049-5.jpg
d.
mc049-8.jpg mc049-9.jpg
 

 50. 

mc050-1.jpg
a.
mc050-2.jpg mc050-3.jpg
c.
mc050-6.jpg mc050-7.jpg
b.
mc050-4.jpg mc050-5.jpg
d.
mc050-8.jpg mc050-9.jpg
 
 
Rewrite the equation in vertex form.
 

 51. 

mc051-1.jpg
a.
mc051-2.jpg
c.
mc051-4.jpg
b.
mc051-3.jpg
d.
mc051-5.jpg
 

 52. 

mc052-1.jpg
a.
mc052-2.jpg
c.
mc052-4.jpg
b.
mc052-3.jpg
d.
mc052-5.jpg
 

 53. 

The function mc053-1.jpg models the daily profit a barbershop makes from haircuts that include a shampoo. Here P is the profit in dollars, and h is the price of a haircut with a shampoo. Write the function in vertex form. Use the vertex form to find the price that yields the maximum daily profit and the amount of the daily profit.
a.
mc053-2.jpg; $50; $300
c.
mc053-4.jpg; $60; $300
b.
mc053-3.jpg; $30; $500
d.
mc053-5.jpg; $30; $600
 
 
Use the Quadratic Formula to solve the equation.
 

 54. 

mc054-1.jpg
a.
mc054-2.jpg, mc054-3.jpg
b.
mc054-4.jpg, mc054-5.jpg
c.
mc054-6.jpg, mc054-7.jpg
d.
mc054-8.jpg, mc054-9.jpg
 

 55. 

mc055-1.jpg
a.
mc055-2.jpg mc055-3.jpg
c.
mc055-6.jpg mc055-7.jpg
b.
mc055-4.jpg mc055-5.jpg
d.
mc055-8.jpg mc055-9.jpg
 

 56. 

mc056-1.jpg
a.
mc056-2.jpg mc056-3.jpg
c.
mc056-6.jpg mc056-7.jpg
b.
mc056-4.jpg mc056-5.jpg
d.
mc056-8.jpg mc056-9.jpg
 

 57. 

A landscaper is designing a flower garden in the shape of a trapezoid. She wants the shorter base to be 3 yards greater than the height and the longer base to be 7 yards greater than the height. She wants the area to be 155 square yards. The situation is modeled by the equation mc057-1.jpg. Use the Quadratic Formula to find the height that will give the desired area. Round to the nearest hundredth of a yard.
a.
12.7 yards
c.
10.2 yards
b.
20.4 yards
d.
320 yards
 

Short Answer
 

 58. 

In an experiment, a petri dish with a colony of bacteria is exposed to cold temperatures and then warmed again.
a.Find a quadratic model for the data in the table.
b.Use the model to estimate the population of bacteria at 9 hours.

Time (hours)
0
1
2
3
4
5
6
Population (1000s)
5.1
3.03
1.72
1.17
1.38
2.35
4.08
 

 59. 

The table shows the number of copies of a book sold per 100,000 people in the United States for five selected years. The values in the first column are years since 1987, so sa059-1.jpg corresponds to 1987, sa059-2.jpg corresponds to 1990, and so on.
Years since 1987 (x)
Copies sold per 100,000 people (y)
0
8.3
3
9.4
6
9.5
9
7.4
12
5.7

a.Use a graphing calculator to model the data with a quadratic function. Round the coefficients and constant term to four decimal places.
b.Graph the data and the quadratic function.
  
 sa059-3.jpg
c.Use the graph or the equation to estimate the number of copies sold per 100,000 people in 1998.
d.Would you use the quadratic function to predict the number of copies sold per 100,000 people in 2005? Explain.
 

 60. 

Graph sa060-1.jpg.
sa060-2.jpg
 

 61. 

Graph sa061-1.jpg. Identify the vertex and the axis of symmetry.
sa061-2.jpg
 

 62. 

Graph sa062-1.jpg. What is the minimum value of the function?
sa062-2.jpg
 

 63. 

Graph sa063-1.jpg. Does the function have a maximum or minimum value? What is this value?
sa063-2.jpg
 

 64. 

A science museum is going to put an outdoor restaurant along one wall of the museum. The restaurant space will be rectangular. Assume the museum would prefer to maximize the area for the restaurant.
a.Suppose there is 120 feet of fencing available for the three sides that require fencing. How long will the longest side of the restaurant be?
b.What is the maximum area?
 

 65. 

Graph sa065-1.jpg.
sa065-2.jpg
 

 66. 

In a baseball game, an outfielder throws a ball to the second baseman. The path of the ball is modeled by the equation sa066-1.jpg, where y is the height of the ball in feet after the ball has traveled x feet horizontally. The second baseman catches the ball at the same height as the height at which the outfielder released it.
a.What was the maximum height of the ball along its path? Answer to the nearest foot.
b.How far was the second baseman from the outfielder at the time he caught the ball?
c.How high above the ground was the ball when it left the hand of the outfielder?
 

 67. 

Use the graph of sa067-1.jpg.
a.If you translate the parabola to the right 2 units and down 7 units, what is the equation of the new parabola in vertex form?
b.If you translate the original parabola to the left 2 units and up 7 units, what is the equation of the new parabola in vertex form?
c.How could you translate the new parabola in part (a) to get the new parabola in part (b)?
 

 68. 

Suppose you cut a small square from a square of fabric as shown in the diagram. Write an expression for the remaining shaded area. Factor the expression.
sa068-1.jpg
 

 69. 

For how many integer values of a can sa069-1.jpg be factored? What are they?
 

 70. 

The Sears Tower in Chicago is 1454 feet tall. The function sa070-1.jpg models the height y in feet of an object t seconds after it is dropped from the top of the building.
a.After how many seconds will the object hit the ground? Round your answer to the nearest tenth of a second.
b.What is the height of the object 5 seconds after it is dropped from the top of the Sears Tower?
 

 71. 

A carpenter is cutting a board to make a brace that will go at the bottom of a storage shed wall. The brace will be in the shape of a right triangle. The hypotenuse will be 41 inches long. The longer leg will be 31 inches longer than the shorter leg.
a. Let x be the length of the shorter leg. Write a quadratic equation that models the situation.
b.Use factoring to solve the equation you wrote in part (a). What are the solutions?
c.What is the length of the longer leg of the brace?
 

 72. 

Two boats leave from the same point at the same time. One boat travels due east and the other travels due north. One boat travels 6 kilometers faster than the other. After 4 hours, the boats are 67 kilometers apart.
a.Let x be the speed of the slower boat. Write a quadratic equation that models the situation.
b.Use a graphing calculator to solve the equation in part (a) graphically. What are the solutions, to the nearest hundredth?
c.What are the speeds of the boats? Round your answers to the nearest hundredth.
 

 73. 

A local health official has determined that the function sa073-1.jpg models the probability that a randomly chosen individual in the community will get the flu x days after the first reported case.
a.Write the function in vertex form.
b.How many days after the first reported case is the risk greatest that an individual will become infected?
 

 74. 

Determine the type and number of solutions of sa074-1.jpg.
 

 75. 

A park planner has sketched a rectangular park in the first quadrant of a coordinate grid. Two sides of the park lie on the x- and y-axes. A trapezoidal flower bed will be bounded by the line sa075-1.jpg, the x-axis, and the vertical lines sa075-2.jpg and sa075-3.jpg, where sa075-4.jpg. The area A of the trapezoid is modeled by sa075-5.jpg. Assume that lengths along the axes are measured in meters. For what value of a will the trapezoid have an area of 25 square meters? Use the Quadratic Formula to find the answer.
 

 76. 

During a manufacturing process, a metal part in a machine is exposed to varying temperature conditions. The manufacturer of the machine recommends that the temperature of the machine part remain below 135°F. The temperature T in degrees Fahrenheit x minutes after the machine is put into operation is modeled by sa076-1.jpg.
a.Tell whether the temperature of the part will ever reach or exceed 135°F. Use the discriminant of a quadratic equation to decide.
b.If the machine is in operation for 90 minutes before being turned off, how many times will the temperature of the part be 134°F?
 

Essay
 

 77. 

Maribel is going to build a rectangular pen for her two dogs. She has 180 feet of fencing. To keep the dogs separate, she plans to put fencing down the middle of the pen to split the large rectangle into two smaller rectangles. What are the dimensions and area of the largest pen area she can use to accommodate both dogs? Show and explain your work.
 

 78. 

Show that es078-1.jpg is equal to es078-2.jpg. Then use this to explain how you know that 5 is the minimum value of the function.
 

 79. 

Use a graphing calculator to graph the function es079-1.jpg.
a.What does the graph let you conclude about real number solutions of es079-2.jpg? Explain.
b.Substitute es079-3.jpg for x in the equation es079-4.jpg. Simplify. Is the resulting equation true? Show your work.
c.What conclusions can you state about solutions of es079-5.jpg? Explain.
 

Other
 

 80. 

A baseball player hits a fly ball that is caught about 4 seconds later by an outfielder. The path of the ball is a parabola. The ball is at its highest point as it passes the second baseman, who is 127 feet from home plate. About how far from home plate is the outfielder at the moment he catches the ball? Explain your reasoning.
 

 81. 

A data processing consultant charges clients by the hour. His weekly earnings E are modeled by the function ot081-1.jpg, where x is his hourly rate in dollars. Can he earn $2500 in a single week? Explain.
 

 82. 

Consider system of equations.
ot082-1.jpg
Suppose the two parabolas have the same axis of symmetry. How many possible solutions does the system have? Explain.
 



 
Check Your Work     Start Over