Name: 
 

Chapter 2



Multiple Choice
Identify the choice that best completes the statement or answers the question.
 

 1. 

Write the ordered pairs for the relation. Find the domain and range.
mc001-1.jpg
a.
{(–2, 5), (–1, 2), (0, 1), (1, 2), (2, 5)}; domain: {–2, –1, 0, 1, 2}; range: {1, 2, 5}
b.
{(5, –2), (2, –1), (1, 0), (2, 1), (5, 2)}; domain: {–2, –1, 0, 1, 2}; range: {1, 2, 5}
c.
{(–2, 5), (–1, 2), (0, 1), (1, 2), (2, 5)}; domain: {1, 2, 5}; range: {–2, –1, 0, 1, 2}
d.
{(5, –2), (2, –1), (1, 0), (2, 1), (5, 2)}; domain: {1, 2, 5}; range: {–2, –1, 0, 1, 2}
 

 2. 

Graph the relation. Find the domain and range.
mc002-1.jpg
a.
mc002-2.jpg
domain: mc002-3.jpg
range: mc002-4.jpg
c.
mc002-8.jpg
domain: mc002-9.jpg
range: mc002-10.jpg
b.
mc002-5.jpg
domain: mc002-6.jpg
range: mc002-7.jpg
d.
mc002-11.jpg
domain: mc002-12.jpg
range: mc002-13.jpg
 

 3. 

Make a mapping diagram for the relation.
{(–1, –3), (0, 1), (3, –1), (4, –6)}
a.
mc003-1.jpg
c.
mc003-3.jpg
b.
mc003-2.jpg
d.
mc003-4.jpg
 

 4. 

Find the domain and range of the relation and determine whether it is a function.
mc004-1.jpg
a.
Domain: all real numbers; range: all real numbers; yes, it is a function
b.
Domain: x > 0; range: y > 0; yes, it is a function.
c.
Domain: positive integers; range: positive integers; no, it is not a function.
d.
Domain: x ³ 0; range: y £ 0; no, it is not a function.
 

 5. 

Use the vertical-line test to determine which graph represents a function.
a.
mc005-1.jpg
c.
mc005-3.jpg
b.
mc005-2.jpg
d.
mc005-4.jpg
 

 6. 

For mc006-1.jpg, mc006-2.jpg.
a.
–19
b.
1
c.
–21
d.
21
 

 7. 

Suppose mc007-1.jpg and mc007-2.jpg.
Find the value of mc007-3.jpg.
a.
mc007-4.jpg
b.
mc007-5.jpg
c.
mc007-6.jpg
d.
mc007-7.jpg
 

 8. 

Graph the equation mc008-1.jpg.
a.
mc008-2.jpg
c.
mc008-4.jpg
b.
mc008-3.jpg
d.
mc008-5.jpg
 

 9. 

Graph the equation mc009-1.jpg by finding the intercepts.
a.
mc009-2.jpg
c.
mc009-4.jpg
b.
mc009-3.jpg
d.
mc009-5.jpg
 

 10. 

Graph the equation –3xy = 6.
a.
mc010-1.jpg
c.
mc010-3.jpg
b.
mc010-2.jpg
d.
mc010-4.jpg
 
 
Find the slope of the line through the pair of points.
 

 11. 

mc011-1.jpg
a.
mc011-2.jpg
b.
mc011-3.jpg
c.
mc011-4.jpg
d.
mc011-5.jpg
 

 12. 

(6, 12) and (–6, –2)
a.
mc012-1.jpg
b.
mc012-2.jpg
c.
mc012-3.jpg
d.
mc012-4.jpg
 

 13. 

(mc013-1.jpg, mc013-2.jpg) and (mc013-3.jpg, mc013-4.jpg)
a.
mc013-5.jpg
b.
mc013-6.jpg
c.
mc013-7.jpg
d.
mc013-8.jpg
 
 
Write in standard form an equation of the line passing through the given point with the given slope.
 

 14. 

slope = –8; (–2, –2)
a.
8x + y = –18
b.
–8x + y = –18
c.
8xy = –18
d.
8x + y = 18
 

 15. 

slope = mc015-1.jpg; (5, –3)
a.
mc015-2.jpgx + y = mc015-3.jpg
c.
mc015-6.jpgx + y = mc015-7.jpg
b.
mc015-4.jpgxy = mc015-5.jpg
d.
mc015-8.jpg x + y = mc015-9.jpg
 

 16. 

Find the point-slope form of the equation of the line passing through the points (–6, –4) and (2, –5).
a.
y + 4 = mc016-1.jpg(x – 2)
c.
y + 5 = mc016-3.jpg(x + 6)
b.
y + 4 = mc016-2.jpg(x + 6)
d.
y + 4 = mc016-4.jpg(x + 6)
 
 
Find the slope of the line.
 

 17. 

mc017-1.jpg
a.
mc017-2.jpg
b.
mc017-3.jpg
c.
–4
d.
none of these
 

 18. 

mc018-1.jpg
a.
mc018-2.jpg
b.
mc018-3.jpg
c.
mc018-4.jpg
d.
mc018-5.jpg
 

 19. 

mc019-1.jpg
a.
mc019-2.jpg
b.
mc019-3.jpg
c.
mc019-4.jpg
d.
mc019-5.jpg
 

 20. 

mc020-1.jpg
a.
undefined
b.
2
c.
1
d.
0
 

 21. 

x = a
a.
a
b.
0
c.
undefined
d.
1
 
 
Find an equation for the line:
 

 22. 

through (2, 6) and perpendicular to y = mc022-1.jpgx + 1.
a.
y = mc022-2.jpgx mc022-3.jpg
b.
y = mc022-4.jpgx mc022-5.jpg
c.
y = mc022-6.jpgx mc022-7.jpg
d.
y = mc022-8.jpgx mc022-9.jpg
 

 23. 

through (–4, 6) and parallel to y = mc023-1.jpgx + 4.
a.
y = mc023-2.jpgx mc023-3.jpg
b.
y = mc023-4.jpgx mc023-5.jpg
c.
y = mc023-6.jpgx mc023-7.jpg
d.
y = mc023-8.jpgx mc023-9.jpg
 

 24. 

through (–7, –4) and vertical.
a.
x = –4
b.
y = –4
c.
y = –7
d.
x = –7
 
 
Determine whether y varies directly with x. If so, find the constant of variation k and write the equation.
 

 25. 


x
y
6
24
18
72
54
216
162
648
a.
yes; k = 4; y =4x
c.
yes; k = 6; y =6x
b.
yes; k = 3; y =3x
d.
no
 

 26. 


x
y
6
7.2
11
13.2
16
19.2
21
25.2
a.
yes; k = 1.2; y = 1.2x
c.
yes; k = 6
b.
yes; k = 5
d.
no
 
 
Determine whether y varies directly with x. If so, find the constant of variation k.
 

 27. 

–6y = –5x
a.
yes; mc027-1.jpg
b.
yes; mc027-2.jpg
c.
yes; –5
d.
no
 

 28. 

8y = 7x – 27
a.
yes; 8
b.
yes; 7
c.
yes; mc028-1.jpg
d.
no
 

 29. 

The range of a car is the distance R in miles that a car can travel on a full tank of gas. The range varies directly with the capacity of the gas tank C in gallons.
a.Find the constant of variation for a car whose range is 341 mi with a gas tank that holds 22 gal.
b.Write an equation to model the relationship between the range and the capacity of the gas tank.
a.
mc029-1.jpg mi/gal; R = mc029-2.jpgC
c.
mc029-5.jpg mi/gal; R = mc029-6.jpgC
b.
mc029-3.jpg mi/gal; C = mc029-4.jpgR
d.
7502 mi/gal; RC = 7502
 

 30. 

A leaky valve on the water meter overcharges the residents for one gallon of water in every mc030-1.jpg months. The overcharged amount w varies directly with time t.
a.Find the equation that models this direct variation.
b.How many months it will take for the residents to be overcharged for 8 gallons of water?
a.
mc030-2.jpg; 20 months
c.
mc030-4.jpg; mc030-5.jpg months
b.
mc030-3.jpg; 20 months
d.
mc030-6.jpg; mc030-7.jpg months
 
 
Find the value of y for a given value of x, if y varies directly with x.
 

 31. 

If y = 166 when x = 83, what is y when x = 23?
a.
11.5
b.
–11.5
c.
–46
d.
46
 

 32. 

If y = 4.8 when x = 2.4, what is y when x = 2.05?
a.
4.1
b.
1.03
c.
–1.03
d.
–4.1
 

 33. 

The distance traveled at a constant speed is directly proportional to the time of travel. If Olivia traveled 112 miles in 3.5 hours, how many miles will Olivia travel in 8.9 hours at the same constant speed?
a.
99.6 mi
b.
284.8 mi
c.
172.8 mi
d.
124.4 mi
 

 34. 

A balloon takes off from a location that is 158 ft above sea level. It rises 56 ft/min. Write an equation to model the balloon’s elevation h as a function of time t.
a.
t = 158h + 56
b.
h = 56t + 158
c.
h = 158t + 56
d.
t = 56h + 158
 

 35. 

A new candle is 8 inches tall and burns at a rate of 2 inches per hour.
a.Write an equation that models the height h after t hours.
b.Sketch the graph of the equation.
a.
mc035-1.jpg
mc035-2.jpg
c.
mc035-5.jpg
mc035-6.jpg
b.
mc035-3.jpgmc035-4.jpg
d.
mc035-7.jpg
mc035-8.jpg
 

 36. 

A 3-mi cab ride costs $3.00. A 6-mi cab ride costs $4.80. Find a linear equation that models cost c as a function of distance d.
a.
c = 0.80d + 1.20
c.
d = 0.60c + 1.80
b.
c = 1.00d + 1.80
d.
c = 0.60d + 1.20
 

 37. 

A cannery processed 605 pounds of strawberries in 3.5 hours. The cannery processed 2100 pounds in 10 hours.
a.Write a linear equation to model the weight of strawberries S processed in T hours.
b.How many pounds of strawberries can be processed in 12 hours?
a.
S = 230T – 200; 2560 lb
c.
T = 230S – 200; 2560 lb
b.
S = 173T – 200; 1874 lb
d.
S = 230T + 200; 2960 lb
 

 38. 

A candle is 10 in. tall after burning for 2 hours. After 3 hours, it is mc038-1.jpg in. tall.
a.Write a linear equation to model the height h of the candle after burning t hours.
b.Predict how tall the candle will be after burning 6 hours.
a.
mc038-2.jpg
c.
mc038-4.jpg
b.
mc038-3.jpg
d.
mc038-5.jpg
 

 39. 

Graph the set of data. Decide whether a linear model is reasonable. If so, draw a trend line and write its equation.
{(1, 7), (–2, 1), (3, 13), (–4, –3), (0, 5)}
a.
yes; mc039-1.jpg
mc039-2.jpg
c.
yes; mc039-5.jpg
mc039-6.jpg
b.
yes; mc039-3.jpg
mc039-4.jpg
d.
yes; mc039-7.jpg
mc039-8.jpg
 
 
Graph the absolute value equation.
 

 40. 

mc040-1.jpg
a.
mc040-2.jpg
c.
mc040-4.jpg
b.
mc040-3.jpg
d.
mc040-5.jpg
 

 41. 

mc041-1.jpg
a.
mc041-2.jpg
c.
mc041-4.jpg
b.
mc041-3.jpg
d.
mc041-5.jpg
 

 42. 

What is the vertex of the function mc042-1.jpg?
a.
(mc042-2.jpg, –4)
b.
(mc042-3.jpg, –4)
c.
(mc042-4.jpg, 4)
d.
(mc042-5.jpg, 4)
 

 43. 

Match the equation with its graph.
mc043-1.jpg
a.
mc043-2.jpg
c.
mc043-4.jpg
b.
mc043-3.jpg
d.
mc043-5.jpg
 

 44. 

Write two linear equations you can use to graph mc044-1.jpg.
a.
mc044-2.jpg
c.
mc044-4.jpg
b.
mc044-3.jpg
d.
mc044-5.jpg
 

 45. 

Write two linear equations you can use to graph the equation.
mc045-1.jpg
a.
mc045-2.jpg
c.
mc045-4.jpg
b.
mc045-3.jpg
d.
mc045-5.jpg
 

 46. 

The graph models a train’s distance from a river as the train travels at a constant speed. Which equation best represents the relation?
mc046-1.jpg
a.
mc046-2.jpg
b.
mc046-3.jpg
c.
mc046-4.jpg
d.
mc046-5.jpg
 

 47. 

Write the equation for the translation of mc047-1.jpg.
mc047-2.jpg
a.
mc047-3.jpg
b.
mc047-4.jpg
c.
mc047-5.jpg
d.
mc047-6.jpg
 

 48. 

Graph the equation of y = |x| translated 4 units up.
a.
mc048-1.jpg
c.
mc048-3.jpg
b.
mc048-2.jpg
d.
mc048-4.jpg
 

 49. 

Compare the graphs of the pair of functions. Describe how the graph of the second function relates to the graph of the first function.
mc049-1.jpg
a.
The second function is the graph of mc049-2.jpg moved to the right 3 units.
b.
The second function is the graph of mc049-3.jpg moved up 3 units.
c.
The second function is the graph of mc049-4.jpg moved to the left 3 units.
d.
The second function is the graph of mc049-5.jpg moved down 3 units.
 

 50. 

The equation mc050-1.jpg describes a function that is translated from a parent function.
a.Write the equation of the parent function. Then find the number of units and the direction of translation.
b.Sketch the graphs of the two functions.
a.
mc050-2.jpg; 1 unit down;
mc050-3.jpg
c.
mc050-6.jpg; 1 unit up;
mc050-7.jpg
b.
mc050-4.jpg; 1 unit up;
mc050-5.jpg
d.
mc050-8.jpg; 1 unit down;
mc050-9.jpg
 
 
Write an equation for the vertical translation.
 

 51. 

mc051-1.jpg; 4 units down
a.
mc051-2.jpg
b.
mc051-3.jpg
c.
mc051-4.jpg
d.
mc051-5.jpg
 

 52. 

mc052-1.jpg; 2 units down
a.
mc052-2.jpg
c.
mc052-4.jpg
b.
mc052-3.jpg
d.
mc052-5.jpg
 

 53. 

Write an equation for the horizontal translation of mc053-1.jpg.
mc053-2.jpg
a.
mc053-3.jpg
b.
mc053-4.jpg
c.
mc053-5.jpg
d.
mc053-6.jpg
 

 54. 

The equation mc054-1.jpg describes a function that is translated from a parent function.
a.Write the equation of the parent function.
b.Find the number of units and the direction of translation.
c.Sketch the graphs of the two functions.
a.
mc054-2.jpg; 5 units right;
mc054-3.jpg
c.
mc054-6.jpg; 5 units left;
mc054-7.jpg
b.
mc054-4.jpg; 5 units right;
mc054-5.jpg
d.
mc054-8.jpg; 5 units left;
mc054-9.jpg
 

 55. 

Write the equation that is the translation of mc055-1.jpg left 1 unit and up 2 units.
a.
mc055-2.jpg
c.
mc055-4.jpg
b.
mc055-3.jpg
d.
mc055-5.jpg
 

 56. 

Graph the function mc056-1.jpg.
a.
mc056-2.jpg
c.
mc056-4.jpg
b.
mc056-3.jpg
d.
mc056-5.jpg
 

 57. 

Describe the relationship between the graph of mc057-1.jpg and the graph of mc057-2.jpg in terms of a vertical and a horizontal translation. Then graph mc057-3.jpg.
a.
3 units left and 4 units down;
mc057-4.jpg
c.
3 units up and 4 units right;
mc057-6.jpg
b.
3 units right and 4 units down;
mc057-5.jpg
d.
3 units down and 4 units left;
mc057-7.jpg
 
 
Graph the inequality.
 

 58. 

4x – 2y < –3
a.
mc058-1.jpg
c.
mc058-3.jpg
b.
mc058-2.jpg
d.
mc058-4.jpg
 

 59. 

–3x + y £ 5
a.
mc059-1.jpg
c.
mc059-3.jpg
b.
mc059-2.jpg
d.
mc059-4.jpg
 

 60. 

A doctor’s office schedules 15-minute appointments and half-hour appointments for weekdays. The doctor limits these appointments to, at most, 30 hours per week. Write an inequality to represent the number of 15-minute appointments x and the number of half-hour appointments y the doctor may have in a week.
a.
mc060-1.jpg
c.
mc060-3.jpg
b.
mc060-2.jpg
d.
mc060-4.jpg
 

 61. 

An electronics store makes a profit of $20 for every portable DVD player sold and $45 for every DVD recorder sold. The manager’s target is to make at least $180 a day on sales of the portable DVD players and DVD recorders. Write and graph an inequality that represents the number of both kinds of DVD players that can be sold to reach or beat the sales target. Let p represent the number of portable DVD players and r represent the number of DVD recorders.
a.
20p + 45r ³ 180
mc061-1.jpg
c.
45p + 20r ³ 180
mc061-3.jpg
b.
45p + 20r ³ 180
mc061-2.jpg
d.
20p + 45r ³ 180
mc061-4.jpg
 

 62. 

Write an inequality for the graph.
mc062-1.jpg
a.
–6x + 5y ³ –30
c.
5x – 6y £ –30
b.
–6x + 5y £ –30
d.
5x – 6y ³ –30
 
 
Graph the absolute value inequality.
 

 63. 

y < |x + 2| – 2
a.
mc063-1.jpg
c.
mc063-3.jpg
b.
mc063-2.jpg
d.
mc063-4.jpg
 

 64. 

y ³ |x + 3| – 2
a.
mc064-1.jpg
c.
mc064-3.jpg
b.
mc064-2.jpg
d.
mc064-4.jpg
 

 65. 

–|x – 1| > y – 5
a.
mc065-1.jpg
c.
mc065-3.jpg
b.
mc065-2.jpg
d.
mc065-4.jpg
 
 
Write an inequality for the graph.
 

 66. 

mc066-1.jpg
a.
y £ |x + 3| – 1
c.
y £ |x – 3| – 1
b.
y £ |x – 3| + 1
d.
y ³ |x – 3| – 1
 

Short Answer
 

 67. 

Graph the relation.
sa067-1.jpg
 

 68. 

Is the relation {(–2, 5), (–1, 5), (–1, 4), (–1, –3), (–2, 0)} a function? Explain.
 

 69. 

Is the relation {(3, 5), (–4, 5), (–5, 0), (1, 1), (4, 0)} a function? Explain.
 

 70. 

The area of a round plate is a function of the radius of the circle. Write a function to model the area of a round plate. Evaluate the function for a plate of radius 5.5 in.
 

 71. 

Find the slope of the line. Show your work.

Rx + Sy = T
 

Essay
 

 72. 

A manufacturing company’s profits are modeled by the equation es072-1.jpg, where y dollars is the total profit and x is the number of items manufactured. Graph the equation and explain what the x- and y-intercepts represent.
 

 73. 

Write the equation of the line that contains the point (8, –3) and is perpendicular to es073-1.jpg. Graph the equation. Write the equation in standard form. Show your work.
 

 74. 

Use the following data: es074-1.jpg.
a.Make a scatter plot.
b.Draw a trend line for your scatter plot.
c.Write a linear equation for your trend line. Show your work.
 

Other
 

 75. 

Describe the vertical-line test for a graph and tell how it can determine whether a graph represents a function.
 

 76. 

Explain how to find the x-coordinate of the vertex of ot076-1.jpg.
 

 77. 

Do the values in the table represent a direct variation? Explain your answer.
x
4
5
7
y
13.1
16.3
22.6
 



 
Check Your Work     Start Over