Multiple Choice Identify the
choice that best completes the statement or answers the question.
|
|
1.
|
Write the polynomial in standard form. Then name the polynomial based on its
degree and number of terms. 2 – 11x2 – 8x +
6x2
a. | –5x2 – 8x + 2; quadratic
trinomial | c. | –6x2 – 8x – 2; cubic
polynomial | b. | 5x2 – 8x – 2; quadratic
trinomial | d. | 6x2 – 8x + 2; cubic
trinomial |
|
|
2.
|
Write the polynomial in standard form. 4g – g3
+ 3g2 – 2
a. | –2 + 4g + 3g2 –
g3 | c. | 3g3 – g2 + 4g –
2 | b. | g3 – 3g2 + 4g –
2 | d. | –g3 + 3g2 + 4g –
2 |
|
|
|
Find the degree of the monomial.
|
|
3.
|
7m6n5
|
|
4.
|
6x8y5
|
|
5.
|
Match the expression with its name. 6x3 – 9x +
3
a. | cubic trinomial | c. | fourth-degree monomial | b. | quadratic
binomial | d. | not a
polynomial |
|
|
6.
|
Write the perimeter of the figure. 
a. | 9x + 7x | b. | 11x + 3x + 2 | c. | 14x + 2 | d. | 14x |
|
|
|
Simplify the difference.
|
|
7.
|
(–7x – 5x4 + 5) –
(–7x4 – 5 – 9x)
a. | 2x4 + 2x + 8 | c. | –14x4
– 10x + 10 | b. | –14x4 + 10x +
10 | d. | 2x4 +
2x + 10 |
|
|
8.
|
(4w2 – 4w – 8) –
(2w2 + 3w – 6)
a. | 2w2 – 7w – 2 | c. | 2w2 –
1w – 14 | b. | 6w2 – 1w –
14 | d. | 6w2 +
7w + 2 |
|
|
9.
|
Simplify the sum. (4u3 + 4u2 + 2) +
(6u3 – 2u + 8)
a. | 10 – 2u + 4u2 + 10
u3 | c. | –2u3 + 4u2 – 2u
+ 10 | b. | –2u3 – 2u2 + 4u –
10 | d. | 10u3 +
4u2 – 2u + 10 |
|
|
|
Simplify the product.
|
|
10.
|
2n(n2 + 3n + 4)
a. | 2n3 + 6n2 + 8n | c. | 2n3 + 6n + 8 | b. | 2n3 + 3n +
4 | d. | n2 +
5n + 4 |
|
|
11.
|
3p4(4p4 + 7p3 + 4p
+ 1)
a. | 12p8 + 3p7 + 4p5 +
p4 | c. | 7p8 + 10p7 + 7p5 +
4p4 | b. | 12p8 + 21p7
+ 12p5 + 3p4 | d. | 12p16 +
21p12 + 15p4 |
|
|
12.
|
8x2(4x2 + 4y6)
a. | 12x4 + 12x2y6 | c. | 12x4 +
12x2y6 | b. | 32x4 +
32x2y6 | d. | 32x4 + 32xy8 |
|
|
13.
|
7a3(5a6 –
2b3)
a. | 12a9 –
9a3b6 | c. | 35a9 –
14a3b3 | b. | 35a9 –
14ab6 | d. | 12a18 –
9a3b6 |
|
|
14.
|
5a2(3a4 + 3b)
a. | 8a4 + 8ab | c. | 15a6 +
15a2b | b. | 15a8 +
3b | d. | 8a6 +
15a2b |
|
|
15.
|
8p(–3p2 + 6p – 2)
a. | –5p3 + 14p2 –
6p | c. | 14p2 – 6p –
5p3 | b. | 48p2 – 16p
– 24p3 | d. | –24p3 + 48p2 –
16p |
|
|
|
Factor the polynomial.
|
|
16.
|
a. | 2x(x2 + 2x + 4) | c. | x(2x2 +
4x + 8) | b. | 2x(x + 2)(x + 4) | d. | 2x3 + 4x2 +
8x |
|
|
17.
|
24w12 + 64w8
a. | 8w8(3w4 + 8) | c. | 8(3w12 +
8w8) | b. | w8(24w4 +
64) | d. | 8w7(3w5 +
8w) |
|
|
18.
|
54c3d4 +
9c4d2
a. | 9c3d2(d2 +
6c) | c. | 9c4d2(d2 +
6) | b. | 9c3d2(6d2 +
c) | d. | 9c4d2(6d2 +
1) |
|
|
19.
|
Find the GCF of the terms of the polynomial. 8x6 +
32x3
|
|
20.
|
The Johnsons want to cover their backyard with new grass. Their backyard is
rectangular, with a length of 3x – 5 feet and a width of 4x – 10 feet.
However, their rectangular swimming pool, along with its surrounding patio, has dimensions of
x + 8 by x – 2 feet. What is the area of the region of the yard that they want to
cover with new grass?
a. | 6x2 – 55x + 104 ft2 | c. | 11x2 – 56x + 66 ft2 | b. | x2
+ 6x – 16 ft2 | d. | 12x2 – 50x + 50
ft2 |
|
|
|
Simplify the product using FOIL.
|
|
21.
|
(3x – 7)(3x – 5)
a. | 9x2 + 6x + 35 | c. | 9x2 –
36x – 35 | b. | 9x2 + 36x +
35 | d. | 9x2
– 36x + 35 |
|
|
22.
|
|
|
23.
|
Simplify the product using the distributive property. 
|
|
24.
|
|
|
25.
|
Simplify using the horizontal method. (2n2 + 4n +
4)(4n – 5)
a. | 8n3 + 26n2 – 36n –
20 | c. | 8n3 + 4n2 – 6n –
20 | b. | 8n3 + 6n2 – 4n –
20 | d. | 8n3
– 6n2 + 36n – 20 |
|
|
26.
|
Simplify using the vertical method. (2k + 3)(2k2
– 4k – 3)
a. | 4k3 + 18k2 – 2k –
9 | c. | 4k3 + 14k2 – 6k –
9 | b. | 4k3 – 2k2 + 6k –
9 | d. | 4k3
– 2k2 – 18k – 9 |
|
|
|
Find the square.
|
|
27.
|
(2x – 6)2
a. | 4x2 – 24x + 36 | c. | 4x2 +
36 | b. | 4x2 – 8x + 36 | d. | 4x2 – 12x +
36 |
|
|
28.
|
(4x – 6y3)2
a. | 16x2 – 24xy3 +
36y6 | c. | 16x2 + 36y6 | b. | 16x2 – 48xy3 +
36y6 | d. | 16x2 – 4xy3 +
36y6 |
|
|
29.
|
|
|
30.
|
Find the area of the UNSHADED region. Write your answer in standard
form. 
a. | –2x2 + 10x + 25 | c. | 10x + 25 | b. | x2
+ 8x + 25 | d. | x2 + 10x + 25 |
|
|
31.
|
Find 332 using mental math.
|
|
|
Find the product.
|
|
32.
|
(j + 7)(j – 7)
a. | j2 + 14j – 49 | c. | j2 + 14j
– 49 | b. | j2 – 14j – 49 | d. | j2 –
49 |
|
|
33.
|
(2n + 2)(2n – 2)
a. | 4n2 – 4 | c. | 4n2 + 2n
– 4 | b. | 4n2 – 4n – 4 | d. | 4n2 + 4n –
4 |
|
|
34.
|
(4p – 6)(4p + 6)
a. | 16p2 – 36 | c. | 16p2 + 48p
+ 36 | b. | 16p2 – 48p – 36 | d. | 16p2 +
36 |
|
|
35.
|
(4m2 – 5)(4m2 + 5)
a. | 16m3 – 25 | c. | 16m4 +
25 | b. | 16m2 – 25 | d. | 16m4 –
25 |
|
|
|
Complete.
|
|
36.
|
y2 + 15 y + 56 = ( y + 7)( y +  )
|
|
37.
|
z2 + 9 z – 90 = ( z – 6)( z
+  )
|
|
|
Factor the expression.
|
|
38.
|
w2 + 18w + 77
a. | (w – 7)(w + 11) | c. | (w + 7)(w +
11) | b. | (w – 7)(w – 11) | d. | (w + 1)(w +
77) |
|
|
39.
|
d2 + 10d + 9
a. | (d + 9)(d – 1) | c. | (d – 9)(d
– 1) | b. | (d – 9)(d + 1) | d. | (d + 9)(d +
1) |
|
|
40.
|
k2 + kf – 2f2
a. | (k – 2f)(k + f) | c. | (k + 2f)(k +
f) | b. | (k + 2f)(k – f) | d. | (k – 2f)(k –
f) |
|
|
41.
|
x2 – 10xy + 24y2
a. | (x + 6y)(x + 4y) | c. | (x + 2y)(x
– 12y) | b. | (x – 2y)(x +
12y) | d. | (x
– 6y)(x – 4y) |
|
|
42.
|
x2 – x – 42
a. | (x – 7)(x + 6) | c. | (x + 7)(x –
6) | b. | (x + 7)(x + 6) | d. | (x – 7)(x –
6) |
|
|
43.
|
15x2 – 16xy+ 4y2
a. | (3x – 2y)(5x + 2y) | c. | (3x + 2y)(5x
– 2y) | b. | (3x – 2y)(5x –
2y) | d. | (3x +
2y)(5x + 2y) |
|
|
44.
|
12d2 + 4d – 1
a. | (6d + 1)(2d + 1) | c. | (6d – 1)(2d +
1) | b. | (6d – 1)(2d – 1) | d. | (6d + 1)(2d –
1) |
|
|
45.
|
6x2 + 5x + 1
a. | (3x – 1)(2x – 1) | c. | (3x – 1)(2x +
1) | b. | (3x + 1)(2x – 1) | d. | (3x + 1)(2x +
1) |
|
|
46.
|
a. | 2(5x – 2)(2x + 3) | c. | (10x – 2)(4x +
3) | b. | 2(5x + 2)(2x – 3) | d. | 2(5x + 4)(2x –
3) |
|
|
47.
|
21x2 + 55x + 14
a. | (3x + 7)(7x – 2) | c. | (3x – 7)(7x +
2) | b. | (3x + 7)(7x + 2) | d. | (3x – 7)(7x –
2) |
|
|
48.
|
6g2 + 11g – 35
a. | (3g + 5)(2g + 7) | c. | (3g + 5)(2g –
7) | b. | (3g – 5)(2g + 7) | d. | (3g – 5)(2g –
7) |
|
|
49.
|
36y2 – 84y – 147
a. | (2y + 7)(6y – 7) | c. | (2y – 7)(18y +
21) | b. | 3(2y – 7)(6y + 7) | d. | 3(2y + 7)(6y +
7) |
|
|
50.
|
48g2 – 22gh – 15h2
a. | (6g + 5h)(8g – 3h) | c. | (6g –
5h)(8g + 3h) | b. | (6g + 5)(8g +
3h2) | d. | (6g – 5)(8g + 3) |
|
|
51.
|
16j2 + 24j + 9
a. | (4j – 9)(4j + 1) | c. | (4j + 3)(4j –
3) | b. | (4j + 3)2 | d. | (4j – 3)2 |
|
|
52.
|
16m2 – 24mn + 9n2
a. | (4m – 3n)(4m + 3n) | c. | (4m –
3n)2 | b. | (16m – 3n)(m +
3n) | d. | (4m +
3n)2 |
|
|
53.
|
|
|
54.
|
|
|
55.
|
r2 – 49
a. | (r – 7)(r + 7) | c. | (r – 7)(r
– 7) | b. | (r + 7)(r + 7) | d. | (r – 7)(r +
9) |
|
|
56.
|
4x2 – 81y2
a. | (2x + 9)(2x – 9) | c. | (2x +
9y)2 | b. | (2x + 9y)(2x –
9y) | d. | (2x
– 9y)2 |
|
|
57.
|
k2 – 16h2
a. | (k + 4h)(k + 4h) | c. | h2(k +
4)(k – 4) | b. | (k –
4h2)(k + 4) | d. | (k + 4h)(k – 4h) |
|
|
58.
|
49b2 – 36
a. | (6b + 7)(6b – 7) | c. | (7b + 6)(7b –
6) | b. | (7b + 6)(7b + 6) | d. | (7b – 6)(7b –
6) |
|
|
59.
|
3x3 + 3x2 + x + 1
a. | x(3x2 + x + 1) | c. | 3x2(x +
1) | b. | (x + 3)(3x2 – 1) | d. | (x + 1)(3x2 +
1) |
|
|
60.
|
6g3 + 8g2 – 15g –
20
a. | (2g2 – 4)(3g + 5) | c. | (2g2 –
5)(3g + 4) | b. | (2g2 + 4)(3g –
5) | d. | (2g2 +
5)(3g – 4) |
|
|
61.
|
50k3 – 40k2 + 75k –
60
a. | 5(2k2 – 3)(5k + 4) | c. | (2k2 +
15)(5k – 20) | b. | (10k2 – 3)(25k +
4) | d. | 5(2k2
+ 3)(5k – 4) |
|
|
62.
|
Find the radius of a circle with an area of  .
a. | 3x – 4 | b. | 9x – 16 | c. | 16x + 9 | d. | 4x +
3 |
|
|
63.
|
Find the GCF of the first two terms and the GCF of the last two terms of the
polynomial. 5h3 + 20h2 + 4h + 16
a. | 5h2, 16 | b. | 5h3,
4 | c. | 5h2, 4 | d. | h2,
h |
|
|
64.
|
Factor completely. 6x4 – 9x3
– 36x2 + 54x
a. | 3x(x2 – 6)(2x – 3) | c. | 6x(x2 – 6)(2x – 3) | b. | 3x(x2 + 6)(2x + 3) | d. | 6x(x2 + 6)(2x +
3) |
|
|
|
Factor by grouping.
|
|
65.
|
3x2 + 7x – 6
a. | (3x – 2)(x – 3) | c. | (x + 3)(3x +
2) | b. | (3x – 2)(x + 3) | d. | (3x + 2)(x –
3) |
|
|
66.
|
21m2 – 29m – 10
a. | (7m – 2)(3m – 5) | c. | (7m + 2)(3m –
5) | b. | (7m + 2)(3m + 5) | d. | (7m – 2)(3m +
5) |
|
|
67.
|
a2 + ab – 56b2
a. | (a + 8b)(a + 7b) | c. | (a + 8b)(a
– 7b) | b. | (a – 8)(a +
7b) | d. | (a
– 8b)(a – 7b) |
|
|
68.
|
40p2 – 13p – 36
a. | (8p + 9)(5p + 4) | c. | (8p – 9)(5p +
4) | b. | (8p – 9)(5p – 4) | d. | (8p + 9)(5p –
4) |
|
Short Answer
|
|
69.
|
a. Find the surface area of the cube. b. Find the volume of the
cube. 
|
|
70.
|
Suppose you are playing a game with two number cubes. Let A represent
rolling 2, 3, or 4, and B represent rolling 1, 5, or 6. The probability of A is 
and the probability of B is  . a. | Simplify  | b. | What is the probability that one number
cube shows 2, 3, or 4, and the other shows 1, 5, or 6? | | |
|
|
71.
|
Factor the following trinomial. w18 –
9w9y5 + 14y10
|
|
72.
|
Factor the following expression. 198q3r2
– 184q2r2 + 18qr2
|
|
73.
|
Find a pair of factors for each number by using the difference of two
squares.
|
Essay
|
|
74.
|
Find the area of the shaded region. Show all your work.
|
|
75.
|
Explain how to factor the following trinomial. g4 +
4g2j – 60j2
|
|
76.
|
Factor the expression by grouping. Show your work. 24q7
– 42q4r + 36q3r2 –
63r3
|
Other
|
|
77.
|
Explain how to factor the following
expression. 66r2h + 57rh + 12h
|
|
78.
|
Let a2 – 2a – 24 = (a + b)(a
+ c). Explain what you can determine about the signs of b and c, and also
explain what you can determine about the absolute values of a and b.
|
|
79.
|
Explain the advantages of the vertical and horizontal methods of multiplying a
binomial and a trinomial.
|
|
80.
|
Can you write a binomial in standard form with a degree of 0? Can you write a
binomial with a degree of 3? Explain.
|